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Abstract

We consider a variant of the well-known Gauss-Seidel method for the so-
lution of Markov chains in steady state. Whereas the standard algorithm
visits each state exactly once per iteration in a pre-determined order, the
alternative approach uses a dynamic strategy. A set of states to be visited
is maintained which can grow and shrink as the computation progresses. In
this manner, we hope to concentrate the computational work in those areas
of the chain in which maximum improvement in the solution can be achieved.
We consider the adaptive approach both as a solver in its own right and as
a relaxation method within the multi-level algorithm. Experimental results
show significant computational savings in both cases.
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1. Introduction

We are interested in developing efficient methods for computing steady-state solutions of large
continuous-time Markov chains. In particular we are interested in new, improved algorithms for
general chains with which solutions can be obtained with substantially less effort than using the
standard schemes. We consider in this paper the adaptive Gauss-Seidel (AGS) method as a variant
of the well-known Gauss-Seidel algorithm (GS) in the form in which it is usually implemented. Our
adaptive relaxation method is based on that of Ride [7]. Adaptive relaxation dispenses with the
statically ordered processing of states in favour of a dynamic strategy. By making an appropriate
choice of nodes to visit, it is hoped that computations that will have little effect on the solution
can be spared and the attention be concentrated on those areas of the solution vector where the
solution can most efficiently be improved.

We discuss adaptive Gauss-Seidel in two different roles. First we consider it as a solution method
in its own right, i.e. as a direct alternative to the standard GS scheme. Second we consider its use
as a relaxation method within the recently introduced multi-level algorithm [2]. It is shown that
AGS acquires a particular meaning in this context.

In section 2 we give the problem statement and introduce some notation. In section 3 we
describe and discuss the adaptive Gauss-Seidel algorithm. In section 4 we briefly state the multi-
level method and show the particular meaning of AGS in this context. In section 5 results of
numerical experiments are presented showing the performance of the Gauss-Seidel and multi-level
algorithms both with and without the adaptive modification. It will be shown that the adaptive
approach can lead to improved performance in both cases. In the final section we summarize the
paper.

2. Problem Description and Aggregation Equations

Consider a Markov chain consisting of n states so.. Denote the unknown vector by p,
where pi is the probability of being in state si.

We then have to solve the system of equations

Pp=O

with the additional condition
imn-1

E Pi=

Note that this equation is usually written as rQ = 0 for r = pT and Q = pT where Q is the
infinitesimal generator matrix.

A coarser representation of the Markov chain described by matrix P may be obtained by ag-
gregation. This means creating a new Markov chain described by a matrix Q with the vector of
state probabilities q, each of whose N states So ... SN-I is derived from a number of states of the
original system. Figure 1 illustrates the situation for an eight-state Markov chain P, where states
are aggregated in pairs to form a four-state coarser level system Q.

In the following we will use the terms fine level and coarse level to refer to Markov chains where
the latter is obtained by aggregation from the former. The relation Sk E Si signifies that the fine
level state sk is mapped by the aggregation operation to the coarse level state Si.
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Figure 1: Aggregation of Markov Chains

The matrix Q of the aggregated system is chosen as follows

TPk 1: Ak
D=kESi sirS,S= , -(1)

3k-

This is the classical aggregation matrix. Note that the v tri-- Q is a function not only of the fine

level matrix P, but also of the fine level solution vector p.

This yields the aggregated equation in the unknown q:

Qq = 0
N-i

i=0

It can then be shown that

qi - Pk
skES,

i.e. the solution q of the aggregated system truly represents a coarser version of the solution p of the
original problem. The probability of being in state q, is the sum of the probabilities of being in any
of its constituent fine-level states. We use the aggregation equation as a basis for the multi-level
method, whereby we approximate the exact solution values Pk in (1) above by values from the
current iterate.

3. Adaptive Relaxation

Gauss-Seidel is an iterative method for the solution of linear systems of equations which proceeds
by successively solving the local equation for each unknown by modifying the value of the unknown
to make its residual equal to zero. The Gauss-Seidel method is given in figure 2. The standard
Gauss-Seidel method visits each state exactly once per iteration step. In addition the order in
which states are visited is fixed and in practice is determined largely coincidentally by the order in
which states have been generated. In the case of Markov chains derived from generalized stochastic
Petri-nets (GSPNs) the ordering is a depth-first or breadth-first traversal starting at the state
representing the initial marking.

We may consider the effectiveness of the Gauss-Seidel method at any one state si at any time
(luring the computation to be the amount by which the current solution value pi changes when
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the (S relaxation step is applied to that state only. Thus GS is effective when it is able to
bring about a large improvement in the state's value, and is ineffective otherwise. However, if the
method is converging towards the steady-state solution, then changes in the solution must become
successively smaller. Thus the effectiveness is a relative measure, meaningful only with respect to
the effectiveness at other states of the chain at a given instant during the computation.

Intuition tells us that the effectiveness of GS at any point in time during the solution process
can vary greatly between different states. In the Markov chain below, for example, there are many
states for which the effectiveness is initially zero, i.e. application of GS at these states would not
change the solution at all! Ideally, of course, we would like to apply GS to those states where the
effectiveness is highest. In this case, the computational effort would be expended with maximum
efficiency. Conversely we would like be able to pass over states with low effectiveness and not
spend any computational effort on them. As the computation progresses, the effectiveness of
states changes as the values of their neighbours are modified. Unfortunately, of course, we do not
know which states have the highest effectiveness, i.e. the largest residuals, and finding them would
essentially involve performing GS at every state, thus destroying the very advantage we were hoping
to achieve.

We must therefore adopt a different strategy, which is derived from that of Rfide [7], who applied
adaptive smoothing to the solution of partial differential equations. We introduce a set of states,
called the active set, which is an approximation to the set of states with high effectiveness at the
current stage of the computation. By only considering states from this set for the application of
CS, we hope to concentrate our computational effort in the "hot spots" - those areas in which GS
is able to achieve substantial improvements to the solution.

The adaptive Gauss-Seidel algorithm is given in figure 3, where M denotes the active set of
states. Since we do not know initially which are the states with high effectiveness, we are forced to
initialize the active set M to include all states in the Markov chain. The main loop of the algorithm
repeats until M has become empty. A state si to be relaxed is chosen and removed from M and
its current solution value stored in a temporary variable t. The relaxation is then performed. If
the change in the solution value exceeds a pre-defined limit c then all states in the chain that are
directly influenced by state si are inserted into M. The motivation for this set update strategy
is that a large change in state si changes the residual by a proportionate amount at those states
whose values depend on pi, and thus it is likely that a high effectiveness is induced there.

Upon termination of AGS, we assume that solving the local equation at any state cannot improve
the solution there by more than an amount proportional to t. Although this means that little
improvement can be achieved locally, this of course tells us nothing about the accuracy of the
solution. We must therefore repeat the procedure with a reduced value of c. We choose a simple
strategy given by the following algorithm:

procedure solve-withAGS
( = t

while 11PP11,o > 6 do
adaptive_-GaussSeidel WE)

with A( chosen to satisfy 0 < Ac < 1.
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As a simple example we consider solving the birth/death chain of figure 4 with a length of n = :13,
a birth rate of A = 49 and a death rate of p = 50. Setting p = A/p and counting from i = 0, this
chain has the solution

'-pAi = 1-p

If, as is typically the case in practice, we initialize the solution vector to the constant function
(,, ... , 1,), then we can observe that the application of GS to any state other than so and s,,_1 will
have no effect, i.e. the computational effort would be completely wasted. Only at the ends of the
chain can an improvement be achieved initially. This is because the initial guess solves the local
equations at every internal state:

We show the history of the active set in figure 5, where the nodes of the chain are plotted vertically
and time horizontally. A cutoff value of e = le - 4 was used. An "X" denotes a state currently
in the active set and a "." a state not currently in the active set, whilst an -0" shows the state
currently being relaxed. During the computation, each node is initially visited once, as all nodes
start out in the active set. However, it can be seen that only at the ends of the chain are nodes put
back into the set and the computation proceeds to treat only nodes 0... 4 and it - 5... n - 1. It
is important to realize that this would hold regardless of the size of the chain, thus the proportion
of nodes that would be visited after the initial sweep can be extremely small. Hence this method
achieves the required result: it only expends computational effort in those portions of the chain in
which substantial improvements can be achieved. When the active set has emptied, t is reduced
and the adaptive procedure repeated with the smaller tolerance. Note that we initialize the active
set to include all states of the chain in order to err on the side of safety; in this particular example
we could have achieved essentially the same result at significantly reduced cost by initializing the
active set to just {s 0 , S.- I }-

4. Multi-Level Solution Algorithm

In this section we briefly review the recently introduced multi-level algorithm, details of which
can be found in [2]. The multi-level algorithm is based on a recursive aggregation of the Markov
chain to obtain approximations of successively smaller dimensions. The algorithm passes through
all levels of the hierarchy of chains in a downward-upward sweep. Solutions on finer levels are used
to construct coarser equations, the approximate solutions of which are used to correct those on the
next finest level. The coarser level equations are the aggregation equations of section 2.

We adopt the following abbreviations for vectors a, b, c E B?"':

a=b*c ai = bi * ci, I < i < m

a= b/c ai = bi /ci, < i < in

The two-level version of the ML iteration is given by the following sequence of steps.

* Perform GS relaxation on finer level

A= GS(pi))

*. Restrict solution to coarse level

4 = R(P) #1 sk1
Sk ES.
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"* (Compute coarse level aggregation miatrix

T_ P k hI ki
E S, /sES'

"* Solve coarse equation for q
N-i

Q(/ 0, E3~= (1)
i=O

"* Compute coarse level correction

q"

" Co(mpute fine level correction

p =I(q*) p; = q,

"* Apply fine level correction

p(i+) = =(,•p.) _ .p*

In this two-level form the method is similar to well-known iterative aggregation/disaggregation
(IAD) methods such as those of Koury, McAllister and Stewart [31 and of Takahashi [9]. The
multi-level algorithm is obtained by recursive application of the two-level algorithm to obtain a
solution to the aggregated equation (3) and is described in algorithmic form in figure 6. We use the
subscript I to denote level of representation (i = Imax finest level, 1 = 0 coarsest level). The coarse
level 1 - 1 and fine level 1 between which the operators I and R map are identified by appropriate
indices. Note that, because of the recursive nature of the algorithm, the unknowns q*, q and 4 are
represented by the variables p*-1 , pi-. and fi-1, respectively. We allow in general the possibility
of applying GS v times at each level with v > 1, denoted by GS'.

The aggregation strategy used at present is very simple. It attempts to map pairs of fine level
states that are strongly coupled to a common coarse level state. To achieve this, we loop through
all states of a given level and for each state si that has not yet been assigned to an aggregated
state, we choose the unassigned neighbour sj for which Pji is maximal. Any states that remain
unaggregated by this policy are mapped to an assigned neighbour si for which Pj1 is maximal.
Thus aggregated states are almost always composed of fine-level states that are neighbours and
states with the strongest coupling coefficients are aggregated together.

Adaptive Gauss-Seidel has a particular relevance when used as the relaxation component of the
ML algorithm. In order to do this we borrow concepts from the multigrid literature, in particular
[8]. We consider the error ei in the current solution value pi in state si

Ci =pPi--A ,

and differentiate between high and low frequency error components, whereby the highest frequency
errors are those that oscillate in size between neighbouring states. Low frequency errors are those
that vary only slowly across the chain. Upon completion of AGS, we can assume that the magnitude
of high frequency error components is small everywhere, since no substantial improvements in the
solution can be made locally. Thus we can conclude that the relative magnitudes of all unknowns
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with respect to their immediate neighbours are approximately correct, regardless of the absolute
size of the error e in those unknowns.

Consider now the definition of the coarse level matrix in the ML method (2):

1: k (: Pk
skESs \SiES,

skES,

The matrix Q is an approximation to the correct coarse system matrix Q, which is obtained by
setting 0 = p above. Since approximate solutions to the coarse system are used to derive corrections
to the solution at the next highest level, it is clear that the difference between Q and Q may affect
the behaviour of the ML method. In particular, if Q is a bad approximation, then the coarse level
correction may be extremely inaccurate. We surmise that it is cases such as this which have led
to reports by some authors of divergence of iterative aggregation-disaggregation methods such as
that of Takahashi [9] for some problems.

The quality of Q, i.e. the size of Q - Q, depends on the quantities

Pk

Sk ESs

which is the conlditional probability of the Markov chain being in state Sk, given that it is in the
aggregate state S1 . Thus it is not necessary to know the absolute size of f in order to be able to
compute a correct value for Q, but it is sufficient to know the relative sizes of all fine-level unknowns
which are aggregated to a common coarse level state. This set of fine-level states is by the definition
of the aggregation strategy always composed of close neighbours and in most cases is a subset of
the set of all immediate neighbours of any state. For any fine-level state sj and coarse level state
Si for which holds sj E Si we have as a rule

{sk: Sk E Sj} C_ {s1: Pjl 6 0}

Tl'hus AGS gives us a means to control the quality of the coarse level matrix by eliminating high-
frequency errors to a controlled tolerance at a possibly greatly reduced cost compared to GS.

5. Experimental Results

Figure 7 shows a multiprocessor system in which the i processors PrI .. . Pr,, compete for access
to two memory units (CMl, (M2 via a common bus. Marsan, Balbo and Conte [4] give a GSPN
model of this multiprocessor (the structure of which is shown in figure 8) which allows for the
possibility of failure and repair of the processors. the bus and the memory units. The model
allows the computation of the effective utilization of the processors in the presence of failures and
comjpetition for the system resources.

Figure 9 shows the computational work of the CS, AGS. ML-GS and ML-AGS methods applied
to this problhem. where I L-CS (M L-A;S) denotes the multi-level method using standard (adaptive)
(;atiss-Seidj( as a relaxation comnponent. W.\e show the total number of millions of floating point
operations used as a funiction of pl)oblein size measured as the number of processors in the model.
The nunmber of states of tei Markov cihains varied from 91 (2 processors) to 3883 (10 processors).
All problenis were solved to an accuracy of I'f'/I1 < 1( - 9.
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Comparing GS and AGS, we see that we are able to achieve a substantial improvement via the
adaptive strategy. For the smallest problem considered, AGS is a factor of about 3.6 faster (not
discernible in the figure); for the largest it is about 9.6 times faster.

In order to compare ML-GS and ML-AGS we magnify the lower section of figure 9, shown as
figure 10. Here we see that the adaptive technique also improves the multi-level method. Since,
however, the ML-GS method is already very efficient for this problem, needing only between eight
and ten iterations to achieve convergence, there was little room left for improvement for ML-AGS.
Both ML schemes are still substantially faster than AGS.

Comparing the standard GS and ML-GS schemes, we see that although these are problems of
very small size, the saving in computational effort of ML over GS is quite dramatic: a factor of 39
for the smallest and of 77 for the largest problems considered. It is also clear that the gap widens
as the problem size is increased. It is results such as these, see [2] for more examples, that make
us confident that the multi-level method is a strong candidate as a steady-state solver for Markov
chains.

Figure 11 shows the results of the forr methods applied to the example stochastic Petri-net in
the original paper of Molloy [5], the structure of which is shown in figure 12. For this problem,
the computational work of GS grows extremely fast with problem size, measured by the number
of tokens k in the initial marking. The iumber of states of the Markov chain varies from 506 to
23821. AGS is a distinct improvement, being already factors of 5 and 8 faster for 20 and 30 tokens
respectively. ML-GS is about twice as fast as AGS throughout and ML-AGS another factor of 2 to
4 faster still. Thus the overall improvement from the standard scheme to the best new scheme is a
factor of 40 for 30 tokens and increases as the problem grows larger.

Figure 13 shows the results of the four methods applied to a model of a processor cluster with
failures and repairs by Muppala and Trivedi [6] (figure 14). In the model jobs arriving can be pro-
cessed or rejected, depereding on whether the system is down or up. A quorum of active processors
can be specified, which at-termines whether jobs can be accepted by the system or not. Enabling
functions (not shown) are used to define the model's behaviour. In addition, the size of the buffer
receiving the jobs can be varied. We chose to scale the size of the problem by varying the buffer
length between 8 and 64, yielding Markov chains with 81 ... 585 states. For this model, the opera-
tion count for GS grows sharply, but linearly with buffer size, whereas the other methods only grow
at a more modest rate. ML-AGS is superior to ML-GS by approximately 30% throughout; both
are about four times faster than AGS, (,2spite the fact that this is an extremely small problem.

6. Conclusions

In this paper we have described and discussed the adaptive Gauss-Seidel method as a variation
of the well-known Gauss-Seidel solver for Markov chains. We also gave a brief description of the
multi-level algorithm which was recently introduced in [2] and which has been shown to often re-
quire significantly less computation time than the standard scheme for a number of test problems.
Experimental results showed that the introduction of an adaptive strategy can improve the perfor-
mance of the Gauss-Seidel method by almost an order of magnitude, and that it can also be used
to advantage as a component of the ML algorithm.

Possible extensions and modifications are to take the coefficients Pij into account when deciding
whether neighbouring states are to be inserted into the active set. This would more accurately
reflect the change in magnitude of the residual in those states, which would avoid insertion of states
with low effectiveness and thus lead to further computational savings. One might also consider
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an adaptive SOR scheme, in which the basic AGS method is modified to allow overrelaxation.
A problem which we have yet to resolve satisfactorily is the automated choice of values for the
paramete-is t0 and At in the AGS scheme. Alternatively, one might consider a dynamic tuning of
to (luring the computation.

Further work will include the implementation of a "fully adaptive" multi-level solver in a manner
similar to Riide [71 - one in which the active set processing crosses the levels of the hierarchy. In
this way it is hoped that an adaptive relaxation which remains restricted to local areas of the chain
on one level initializes the active set on neighbouring levels to a corresponding subset of the states
on those levels. This may lead to substantial savings for the ML-AGS method, as restarting each
level with a full active set could be avoided.
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procedure standard-.Gauss-Seidel
for i =0 to it - 1 do

Figure 2: Standard Gauss- Seidel Algorit hmz

procedure Adapt ive-Gauss-Se idel (f)
M = ý,,..$,
whil.. M A 0

choose state si E M
M = M \s
t =h

if jt-pj>Ei

for all j 54 i, Pj1- $0
M = M US.,

Figure 3: Adaptive Gauss-Seidel algorithm

Figure 4: Birth-Death Markov Chain
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Figure 5: Active set history
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procedure al(1)
if (I = 0)

solve P1IP1 = 0
else

01 = GS' (PIt)
01-1 - RI-1,1(0t)
MW( - 1)

PL• = -/D-
PI = Q0-i ,(P*--)

return

Figure 6: Multi-Level Algorithm

Figure 7: Simple Multiprocessor Example

r- -

Figut re M: ,~arsati/BIalbo/(l'onte Multiprocessor Model
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Figure 9: Computational work for GS (A), AGS (B), ML-GS (C) and ML-AGS (D) to solve the
Marsan/Balbo/Conte problem.
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Figure 10: Computational work for ML-GS (C) and ML-AGS (D) to solve the Marsan-Balbo-Conte

problem (Magnification of part of figure 9).
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Figure 11: Computational work for GS (A), AGS (B), ML-GS (C) and ML-AGS (D) to solve
Molloy's example SPN.

11



k

Figure 12: Molloy's example SPN.
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Figure 13: Computational work for GS (A), AGS (B), ML-GS (C) and ML-AGS (D) to solve the
Muppala-Trivedi model.
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Figure 14: GSPN of Muppala-Trivedi
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